Universität Freiburg Institut für Informatik

Dr. Fang Wei

fwei@informatik.uni-freiburg.de

Foundations of Query Languages Summerterm 11 Discussion by 27.07.2011

5. Datalog

Exercise 1 (Datalog)

Encode words over the alphabet $\{a, b\}$ structures having the following relations:

- Min(X): expressing that X is the first position of the word.
- Max(X): expressing that X is the last position of the word.
- Succ(X, Y): expressing that the position Y is the successor position of X.
- $P_a(X)$: position X contains letter a.
- $P_b(X)$: position X contains letter b.
- a) Write a datalog program that makes an atom yes true iff there are more a's than b's in the string.
- b) Write a datalog program that makes an atom yes true iff the word is a palindrome.

Exercise 2 (Datalog)

Give the well-founded semantics for the following Datalog programs:

- a) $p \leftarrow \neg q$ $q \leftarrow \neg r$ $r \leftarrow \neg s$ $s \leftarrow \neg p$ b) $s \leftarrow \neg r$ $p \leftarrow \neg q$ $q \leftarrow p, \neg r$ c) $p \leftarrow q$ $p \leftarrow \neg q$
- d) $win(X) \leftarrow move(X, Y), \neg win(Y)$ with EDBs: {move(1, 2), move(2, 3), move(3, 1), move(3, 4)} {move(1, 2), move(2, 3), move(3, 1), move(3, 4), move(4, 5)}

Exercise 3 (Datalog boundedness)

Consider the following constant-free Datalog program:

 $P(x) \leftarrow P_0(x)$ $P(x) \leftarrow R(x, y), P(y)$ $R(x, y) \leftarrow S(x), S(y)$

Is the program bounded? If so, prove your claim and give an equivalent non-recursive Datalog program, otherwise give a counterexample.

Exercise 4 (Propositional Logic Programming)

Let I and J be two models of a propositional logic program P. Prove that the intersection of I and J is also a model of P.

Exercise 5 (P-completeness)

A monotone Boolean circuit contains AND, OR, and INPUT gates, and a single OUTPUT gate. An input for a Boolean circuit consists of an assignment of truth values (*true* or *false*) to each input gate of the circuit. The determination of the output gate value is known as the Circuit Value Problem (CVP). Prove that the CVP is P-Complete under logspace transformations.